• Portal do Governo Brasileiro
  • Atualize sua Barra de Governo
  • Ir para o conteúdo 1
  • Ir para o menu 2
  • Ir para a busca 3
  • Ir para o rodapé 4
  • Acessibilidade
  • Alto Contraste
  • Mapa do Site
Topo
Laboratório Nacional de Computação Científica

LNCC

Ministério da Ciência, Tecnologia e Inovações
Instagram Linkedin Facebook YouTube
  • SDumont
  • Imprensa
  • SEI-MCTI
  • Webmail
  • Intranet
  • Fale Conosco
Destaques Result. Programas PCI-LNCC Resultado Final do 1º Processo Seletivo de 2021 Guia de Conduta
logo

O LNCC

  • Histórico
  • Missão
  • Estrutura Organizacional
  • Corpo Técnico Científico
  • Documentos Institucionais
  • Localização

Coordenações

  • Coordenação de Métodos Matemáticos e Computacionais - COMAC
  • Coordenação de Modelagem Computacional - COMOD
  • Coordenação de Pós-graduação e Aperfeiçoamento - COPGA
  • Coordenação de Tecnologia da Informação e Comunicação - COTIC
  • Coordenação de Gestão e Administração - COGEA

Pesquisa e Desenvolvimento

  • Linhas de Pesquisa
  • Produção Técnico-Científica
  • Projetos de P & D
  • Grupos de Pesquisa

Supercomputador SDUMONT - Computação de Alto Desempenho

  • Supercomputador Santos Dumont
  • CENAPAD
  • SINAPAD

Programas Nacionais

  • INCT-MACC
  • LABINFO
  • SINAPAD

Inovação

  • Incubadora
  • NitRio
  • Soluções para Empresas

Programas  Acadêmicos

  • Mestrado e Doutorado
  • Programa de Verão
  • Bolsas de Estudos

Eventos

Biblioteca

  • Biblioteca

Acesso à Informação

  • Institucional
  • Ações e Programas
  • Participação Social
  • Auditorias
  • Receitas e Despesas
  • Licitações, Contratos e Convênios
  • Servidores
  • Informações Classificadas
  • Serviço de Informação ao Cidadão - SIC
  • Perguntas Frequentes
  • Dados Abertos
  • Gestão Documental
  • Agenda do Diretor
  • Carta de serviço ao Cidadão
  • Sobre a Lei de Acesso à Informação
  • Assessoria de Comunicação
  • Ouvidoria
  • Comissão de Ética
  • Gestão de Riscos
  • Guia de Conduta
  • LGPD
 

EVENTO



Embedding Prior Knowledge Into Loss Function of Neural Networks

Tipo de evento:
Exame de Qualificação


The increase of available data and technological advances led to he adoption of machine learning techniques, which enable the model to extract information from training data. Deep Learning methodologies have revolutionized the field of computational modeling, achieving impressive results in areas like computer vision and solution of differential equations. Nevertheless, deep learning models need sufficient data for training and suffer from issues related to the incorporation of prior knowledge, which require regularization or specific reprocessing steps to improve training performance. For instance, in natural science applications, the phenomena are governed by conservation laws. Moreover, in computer vision, tasks involving pattern recognition may be invariant under some groups of transformations. The former motivates a new type of machine learning method named Physical Informed Neural Networks (PINNs) that has opened up new possibilities for addressing computational modeling tasks, like solving partial differential equations (PDEs). Regarding computer vision applications, the usual procedure is to argument the training data with samples generated considering the desired tranformations, like rigid motion in point clouds classification. One important aspect of PINNs is the composition of the loss function that includes terms derived from the governing equations. Such point steers our research towards its main claim: address computer vision problems by transferring knowledge through the incorporation of new mathematical terms into the loss function.
Such claim involves the combination of classical and deep learning methodologies having the potencial to lead to more powerful methodologies as verified in the computacional experiments shown in this proposal for point cloud classification and magnetic resonance image (MRI) denoising. Also, taking in mind that PINNs were first developed to solve differential equations with or without the auxiliary of real/simulated data, this proposal explores PINNs model to aproximate the solution of a differential equation without a known analytical or numerical solution.

Para assistir acesse:
meet.google.com/fov-oahv-jpb

Data Início: 26/06/2023
Hora: 09:00
Data Fim: 26/06/2023
Hora: 12:00

Local:  LNCC - Laboratório Nacional de Computação Ciêntifica - Virtual

Aluno:
Italo Messias Felix Santos - - LNCC

Orientador:
Gilson Antônio Giraldi - Laboratório Nacional de Computação Científica - LNCC

Participante Banca Examinadora:
Antônio Tadeu Azevedo Gomes - Laboratório Nacional de Computação Científica - LNCC
José Manoel de Seixas - Universidade Federal do Rio de Janeiro - UFRJ
Pablo Javier Blanco - Laboratório Nacional de Computação Científica - LNCC

Suplente Banca Examinadora:
Marcio Rentes Borges - Laboratório Nacional de Computação Científica - LNCC


Últimas eventos

  •   Principal
  •   Hotéis/Pousadas
  •   Área do Inscrito
 
 Voltar para o topo
Rodapé

Principal

  • Estrutura Organizacional
  • Corpo Técnico Científico
  • Produção Técnico-Científica
  • Projetos de P & D
  • Mestrado e Doutorado
  • Bolsas de Estudos
  • Seminários
  • Congressos / Escolas / Cursos
  • Biblioteca

Acesso à Informação

  • Institucional
  • Ações e Programas
  • Participação Social
  • Auditorias
  • Receitas e Despesas
  • Licitações, Contratos e Convênios
  • Servidores
  • Informações Classificadas
  • Serviço de Informação ao Cidadão - SIC
  • Perguntas Frequentes
  • Dados Abertos
  • Gestão Documental
  • Agenda do Diretor
  • Carta de serviço ao Cidadão
  • Sobre a Lei de Acesso à Informação
  • Ouvidoria
  • Comissão de Ética
  • Gestão de Riscos
  • Guia de Conduta

Serviços

  • Fale Conosco
  • Assessoria de Comunicação

Redes Sociais

  • Instagram
  • Linkedin
  • Facebook
  • YouTube

Navegação

  • Acessibilidade
  • Mapa do Site

Brasil - Governo Federal   Brasil - Governo Federal